
J .  Fluid Mech. (1983), ad. 136, p p .  264-276 

Printed in  Great Britain 
269 

Forcing of convection due to time-dependent 
heating near threshold 

By M. C. CROSS, 
Bell Laboratories, Murray Hill, N J  07974 

P. C. HOHENBERG 
Institute for Theoretical Physics, UCSB, Santa Barbara, CA 93106, 

and Bell Laboratories, Murray Hill, NJ  07974 

AND M. LUCKE 
Institute for Theoretical Physics, UCSB, Santa Barbara, CA 93106, 

and IFF, KFA Jiilich, D5170 Jiilich, W. Germany 

(Received 9 December 1982) 

The forcing of convection due to time-dependent heating is calculated in terms of 
an inhomogeneous boundary condition on the complex envelope function at  the 
sidewalls of the container. Conditions for eliminating the forcing are derived. 
Application is made to recent experiments on the timescale for the onset of 
convection. 

1. Introduction 
I n  a geometrically perfect Rayleigh-BBnard cell with no imposed heat currents 
through the sidewalls there is a sharp transition (‘perfect bifurcation’) from the 
conducting state, with no fluid motion, to  the convecting state. If the Rayleigh 
number is held a t  a constant value above its critical value, the conducting state is 
unstable. This unstable state will persist indefinitely, however, unless some perturb- 
ation forces the convecting state. Three types of perturbations that initiate the 
convecting state may be identified. Geometric or thermal imperfections are a common 
source: these will lead to a rounding of the transition with no sharp bifurcation even 
under static conditions. I n  the absence of these imperfections the intrinsic thermal 
noise may initiate the growth of the.convecting pattern. The strength of this noise 
is very weak, but the timescales for the convection to grow to observable strength 
under such forcing have been estimated to be not excessively long (Ahlers et al. 1981). 
Mechanical vibration of the cell will presumably play a similar role. Finally, the simple 
operation of changing the Rayleigh number to reach supercritical values will in 
general induce lateral heat flows in the fluid that in turn drive the convection. This 
mechanism leaves a perfect bifurcation in static measurements. A crude estimate of 
this forcing for the case of perfectly conducting sidewalls was given by Ahlers et al. 
(1981). In  the present paper we obtain a much better estimate, albeit for stress-free 
horizontal boundaries, and extend the calculation to the case of general thermal 
properties of the sidewalls. In  addition we show that the forcing may be incorporated 
into the boundary perturbation scheme of Daniels (1977, 1978). We also demonstrate 
that  the strength of the forcing may be controlled by varying the temperature of the 
upper and lower plates independently : indeed the forcing vanishes (in the Boussinesq 
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approximation) if the temperature of the lower plate is raised a t  the same rate as 
the temperature of the upper plate is decreased. 

Our result is in the form of a boundary condition for the amplitude equation (Newel1 
& Whitehead 1969; Segel 1969; Ahlers et al. 1981) a t  the lateral boundary of the 
B6nard cell. The result applies whenever the amplitude equation is valid, i.e. for slow 
space and time variation and for Rayleigh numbers close to threshold. Although the 
effect we consider is somewhat subtle, i t  controls a number of experimentally 
important phenomena near threshold, such as the timescale for convective onset. In  
addition, the forcing we calculate tends to induce particular patterns of convection - 
namely those with rolls parallel to the sidewalls - which may not be the optimum 
geometry a t  the stationary value of the Rayleigh number above threshold. For 
example in a cylindrical geometry such as that used by Ahlers et al. (19Sl), the forcing 
initially leads to an axisymmetric pattern of rolls, which ultimately decays to another 
pattern, of roughly straight rolls. 

In  $2 the forcing term is obtained from the Boussinesq equations with stress-free 
horizontal boundaries near threshold. Section 3 contains an application to the onset 
time measurements of Ahlers et al. (1981) and surprisingly good agreement is obtained 
between experiment and theory. A subsequent paper (Ahlers, Hohenberg & Lucke 
1983) will discuss the forcing of externally modulated convection, a situation for 
which the same ideas apply. 

2. Derivation of forcing term 
The basic observation that allows a simple treatment of the problem is that the 

lateral thermal inhomogeneities induced by the time-dcpendent heating are confined 
to a healing length of order the plate separation d near each sidewall. On the other 
hand near the critical Rayleigh number R, = yx4 ( E  = (R--K,)/R, 4 1) the strength 
of the convection (defined by the conventional envelope function A(r,  t ) ;  Ahlers et  
al. 1981) varies over the longer lengthscale d d .  For the case of stress-free horizontal 
boundaries the forcing may therefore be incorporated as an inhomogeneous boundary 
condition on the envelope function. A similar result was derived by Daniels (1977) 
for an externally imposed lateral heat flow, and, once the new boundary condition 
is derived, his analysis of the solutions may be taken over directly to  the present 
problem. 

The fluid variables for two-dimensional flow are the horizontal (x) velocity u, 
the vertical ( z )  velocity ui, the temperature 5” and the pressure P, and are described 
by the Oberbeck-Boussinesq equations 

ic = a[a~+a~lu- - IUla ,+ua , lu-a ,p ,  (1) 

zi, = g ~ +  g[a; + a;] 1D - [m a, + u a,] zli - a, P, ( 2 )  

T = [a~+a;]T-[ula,+ua,]~’, (3) 

0 = a,u+a,ui (4) 

where distance is scaled by the cell depth d,  time by d 2 / K f  (with Kf the thermal 
diffusivity of the fluid), and temperatures are scaled by Kf v /agd3 (with 1’ the kinematic 
viscosity, a: the expansion coefficient and g the acceleration due to gravity). The 

( 5 )  
Prandtl number is 

fl = V / K f .  

We impose the boundary conditions a t  the upper and lower plat’es : u’ = a, u = 0 at 
x = 0, I ,  and T = TU( t )  a t  z = I ,  T = T P ( t )  at’ z = 0. The former conditions are the 
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stress-free conditions used for mathematical convenience. The instantaneous Rayleigh 
number is defined as R ( t )  = TP(t)-T"( t ) .  

We allow for a general time dependence for TU and T P :  

but will later take the low-frequency limit. We investigate a semi-infinite geometry 
with liquid confined to the region x < 0 by a rigid sidewall of thickness t ,  a t  which 
u = w = 0. The thermal conditions a t  the sidewall are completely determined by 
assuming good thermal contact with upper and lower plates, and no heat loss through 
the outer surface of the sidewall a t  x = t,, together with the usual assumption of 
continuity of temperature and heat flux at x = 0. These conditions are effectively 
realized in many experiments and result in a perfect bifurcation in statir 
measurements. 

I n  the time-independent situation and for small e, the fluid variables outside an 
O(1) healing length near the sidewall are given in terms of a complex envelope 
function A(x, t )  (see Ahlers et al. 1981) by 

w = id6 7c[A(2,t)eiPor+c.c.]sinnz+O(e), (8) 

u = d3 7ci[A(x,t)eiQo"-cc.c.]cos7cz+0(~), (9 1 
0 = f 4 6  7c3[A(x,t)eiQ~z+c.c.]sin7cz+O(e), (10) 

where qo = x / z / 2  is the critical wavevector and 0 is the deviation of the temperature 
from the conducting profile. The envelope function satisfies the amplitude equation. 

( 1 1 )  70k = € A +  ( ;A"-  gIA(2A, 

with 70, = $7c2a/(a+ l ) ,  gt = 8/37c2 and g = + (the dot denotes a time derivative and 
the prime an x-derivative). The Nusselt number N (dimensionless heat flux) is given 

where S is the area of the container. Note that IAl - €4, and A varies on the slow 
lengthscale e-:f[,, and timescale E - ~ T ~ .  

The procedure for determining the boundary condition satisfied by the envelope 
function at the sidewalls was discussed by Brown & Stewartson (1977) and by Daniels 
(1977). For time-independent heating and the lateral boundary conditions described 
above, the resulting boundary condition on the envelope function is homogeneous, 
and a t  lowest order it is simply 

(13) 

Daniels considered the effect of an imposed lateral heat flow so that 

= h(z) (X = 0) .  (14) u = w = o ,  - 

A(% = 0) = 0. 

ae 
ax 

He found that the boundary condition was determined by the Fourier component 
h, defined by 

h(z) = h, sin nnz, 
n 

leading to the inhomogeneous condition 
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with a=--- 2 h  
9x443 l '  

a: = -cot-'(2 4 2 ) .  (18) 

(Equation (17)  differs from equation (3.8) of Daniels (1977) owing to the different 
normalization we have used in (S l l ) . )  The inhomogeneous term serves to force the 
convection and renders the bifurcation imperfect. We will derive the analogous 
inhomogeneous term induced by time-dependent temperatures on the upper and 
lower plates. 

As well as leading to forcing terms, a slow time dependence in the heating will 
slightly change the functional form of the onset solution from (8)-( 10). We will neglect 
these small effects here. I n  the limit of low frequency and small deviation from 
khreshold ((R(t)  -Rc)/R, 4 1)  t,he envelope function boundary condition is still 
governed by the n = 1 Fourier component of (15) for the temperature distribution 
a t  x = 0, and we only need the thermal boundary condition replacing (14) for this 
component. 

We define the liquid temperature distribution 

( 2 ,  t )  + e(x, 2 ,  q,  (19) T = Tcond 

with Tcond the conducting temperature profile in a laterally infinite liquid, but with 
the time-dependent upper and lower plate temperatures TU(t),  T'(t) : the quantity 0 
is the laterally varying correction. When the temperature from (19) is inserted into 
(1)  and (2), the term Pond is cancelled by the pressure, and only the correction 6' drives 
convection. We expand 

O(r, z ,  t )  = -x 6',(x, w )  sinnnzePiwt. (20) J: , 
It is then a simple matter to solve the heat-conduction equation in the wall with 
T = TP(t )  a,t z = 0 and T = T'(t) a t  z = 1 ,  and with vanishing heat current a t  t,. 
Continuity of the temperature and of the horizontal heat current a t  x = 0 then 
imposes the condition on the n = 1 component a t  x = 0:  

O,(w) +p- l (w)  ax Ol(w) = 2iw7c(A1 - 1 )  (fZSZ)-2[TU(w) + Tp(w)],  (21 1 

with fZ2 = n2 - iw, (22) 

( 5 2 ) ~  = 7c2-A1io, (23) 

p(w) = 32 A;' tanh (at,). (24) 

The thermal parame.ters appear as A, = Kf/K, and A, = Kf/Kw, the ratios of the 
thermal diffusivities and conductivities respectively, of fluid and wall material. 
Velocities do not enter the condition (21) because of the rigid boundary a t  x = 0. 

In the limit of low frequencies wro 5 e (which is necessary for the validity of the 
amplitude equation) and for A,w + x 2 ,  (21) may be transformed to  a time-local 
condition : 

2 
~ , ( ~ , t ) + ~ u - l a , e , ( ~ , t )  = 7c [PJ+P], (25 )  

with p = nAzl tanh (nt,). (26 ) 
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We now follow the procedure of Daniels (1977) to derive the boundary condition 
on the envelope function. This is described in detail by Daniels (1977) and by Cross 
et al. (1983). and we merely sketch the argument here for completeness. We assume 
that the fluid velocities are small near the sidewalls (for -2 < c-4) and solve the 
coupled linearized equations for 8,  u, UI. (As stated before we neglect the deviation 
of Tcond from a linear a-dependence in (3),  so that ui a, Tcond is approximated by Rw 
as in the usual case.) The solutions take the form of a slowly modulated periodic 
function that will match to the solutions (8)-(10) in the bulk, together with a 
wall-localized solution decaying over the length ( 2 ~ ) ~ ' .  Imposing the fluid boundary 
conditions u = UJ = 0, using (25), and eliminating the wall-localized contribution, we 
find a boundary condition on the envelope function a t  lowest order of the form 
A = a e-la as in (1 6) with 

4 
a ( f )  = (-) 9n72/3 1+2p/7t ( 1 - A 1 ) [ P U + P f ] ,  

a = -cot-l(22/2). (28) 

Equations (1  l ) ,  (16), (27), (28) are the main results we wish to present. They are exact 
in the limit of long times and small deviations from threshold (keeping c ~ ~ / t  of order 
unity).t Homogeneous corrections of higher order in c may be calculated as in 
previous work (Cross et al. 1983). 

The amplitude equation (1 1) and inhomogeneous boundary forcing (27), (28) 
provide a straightforward way of analysing the forcing of convection due to 
time-dependent heating in various situations. These results may also be used to 
attempt to eliminate the effects of such forcing so that any intrinsic forcing may be 
unmasked. We note that if TU = - Tf, i.e the lower plate is warmed a t  the same rate 
as the upper plate is cooled (thereby increasing R) the forcing of the onset pattern 
is eliminated. Also, if A, = 1, so that the sidewalls and liquid have the same thermal 
diflusivities, the forcing disappears. These last results are not confined to the low- 
frequency limit, but follow directly from (21). 

It is also of interest to consider the growth of the lowest spatial mode for a 
particular geometry. This mode is driven by the lateral heat flow induced as the 
Rayleigh number is increased slowly through threshold, by the more common 
protocol of raising the temperature of the lower plate alone. In  this case the partial 
differential equation (1 1 )  becomes an ordinary differential equation for the amplitude 
of the lowest mode, and the boundary condition (13) is replaced by an additive 'field' 
driving this amplitude. Consider for example the two-dimensional situation of a fluid 
confined between infinite lateral sidewalls a t  x = +_ L. The mode that is thus driven 
has rolls parallel to  the sidewalls.1 The boundary conditions take the form 

with a determined above and the phase a now given by 

a = .\/$ nL-ccot-l(2 d2). 

t The estimate of the forcing presented in equation (C 20) of Ahlers et al. (1981) neglected the 
coupling of the conduction profile to the velocity field. In addition, this expression was only 
estimated very roughly, so that the result in (C 21) cannot be considered reliable. 

M would induce rolls parallel to the x-axis, 
but these would only appear in the bulk of the container in a horizontal diffusion time T ~ ,  = M2. 
The estimate given here is thus valid for t < T ~ .  

1 The presence of distant transverse sidewalls a t  y = 
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We will consider the growth of the even solution A,, which in general will become 
large (+ a )  first. It is then convenient to  define 

satisfying A,( &- L) = a cosa according to (29). The amplitude A ,  = 

mode then satisfies, in the linear regime, the equation 
of the first 

2 = 7;’ 6 ( t )  x+f, (32) 

with 6 ( t )  = ~ ( t )  - E , ,  the value of 6 measured from its value 6, = c: n2/4L2 a t  the onset 
of the lowest mode in the absence of the boundary forcing. Here 

- 4  
f = -7c1(8+ 6,) U COS OL 

K 
(33) 

acts as a forcing field. (We remind the reader that  a( t )  oc S through (27).) We have 
neglected terms involving two time derivatives in (32), since these are small for the 
slow time dependence we are assuming. Note also that only the linear part of the 
amplitude equation need be considered in order to determine the onset time of 
convection. At later times, the nonlinear terms in (11) are necessary to limit the 
growth of the initial pattern, but then the forcing term f becomes negligible. 

To illustrate the resulting behaviour we consider the case of a linear ramp in 6 ( t )  
investigated by Ahlers et al. (1981): 

6 ( t )  = -Go (t  < - to) ,  
(34) 

E ( t )  = Pt  (t  > -to),  

with to = e,/p and -6, < 0. I n  this case a( t )  is a constant a, for t > -to, and (32), 
(33) may be integrated directly to  give 

where p = 70% and we have assumed A ( x )  = 0 for t < - t o .  The quantity in square 
brackets may be replaced by ( 2 ~ $  for the times t ,  to Pi of interest. The asymptotic 
solution (valid for a, < < (c/g)i) may be seen to be identical with that arising from 
an effective forcing in (32) 

(36) 
4 

f= fe f f  = -7~16ca,cosa,  
K 

and the term in 6 in (32) does not contribute to the growth. Inserting the expression 
for a, from (27), we find an effective forcing proportional to the ramp rate: 

with 

feff = fl P, 

LL ( l -h , )cosa,  
f - 4  -- -1 (2) 4R 
- K T O  9n72/3 1+2p/n 

(37) 

where p is given in (26). Inserting values appropriate to the stress-free boundary 
conditions, we find 

( l -h , )cosa.  
4.\/3 (T 1 

f’ = n 2 l + c r L 2 1 + 2 p / x  
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3. Application to the experiments of Ahlers et af. (1981) 
Let us first summarize the experimental results of Ahlers et al. (1981) and their 

interpretation. A ramp in Rayleigh number of the form (34) was applied to a 
cylindrical cell, and the initial growth of the Nusselt number was quant%atively fit 
by (32) and (12), witht 

f=f”+/3?, (39) 

f’ = 1.4 x loe2, f” = 7 x lop4. The small extrapolated valuefO for /3-0 was ascribed 
to apparatus imperfections, and it is the coefficient? which we wish to compare with 
our estimate (38). 

I n  the experiments of Ahlers et al. i t  was found that the mode initially excited was 
not the one which ultimately stabilized a t  constant Rayleigh number. The main effect 
of this complication is in the nonlinear terms in (11)  which do not influence the onset 
time calculation, but some assumption on the form of the initial mode is necessary 
in order to evaluate the small threshold shift ec which enters the expression for the 
parameterf, in our theory. In  the interpretation of the experiments, Ahlers et a.1. 
tentatively assumed that the initial pattern was hexagonal and the final pattern had 
concentric rolls with zero amplitude a t  the centre of the cell. A careful analysis of 
the critical Rayleigh number, and of the static Nusselt number as a function of 
Rayleigh number, performed subsequently by Behringer & Ahlers (1982), yielded a 
different interpretation which is more consistent with the forcing we calculate. Their 
preferred initial state has concentric rolls with finite amplitude a t  the centre of the 
cell, and the final state has roughly straight parallel rolls which break the cylindrical 
symmetry (this interpretation is confirmed by the experiments of Kirchartz et al. 
1981). As mentioned above, the only effect of this uncertainty on our (linear) 
calculation is in the value of the threshold shift E ,  which enters (36). We use the 
axisymmetric envelope function discussed by Ahlers et al. (19811, but with an 
amplitude that is finite a t  the centre of the cell, so the threshold shift is E ,  = n2<t/4L2, 
where L is the radius of the cell. The analysis leading to (38) may be repeated for 
the cylindrical pattern and the same result is found, once again repeated for stress-free 
horizontal boundaries. 

In  attempting to apply our theory to real experiments it is necessary to  consider 
the effect of rigid horizontal boundary conditions. As is well known, the linear 
solutions near threshold are more complicated than (8)-( lo), but an amplitude 
equation of the form (11) may still be derived (Wesfreid et al. 1978; Cross 1980) for 
a laterally infinite system. Unfortunately, the effect of sidewalls is not simple to 
analyse in this case even for static situations, so there is no rigorous result analogous 
to the boundary condition (16), even arbitrarily close to threshold. I n  the absence 
of such a derivation, i t  appears to us reasonable to assume a boundary condition of 
the form of (16), (27) and (28), and a forcing field analogous to (36) and (39), with 
unknown O( 1 )  changes in the numerical factors. 

The theoretical result in (38) may be evaluated for the experimental conditions of 
Ahlers et al. (1981), where L = 4.72, (T = 0.78, A, w 0, p = n2Kwtw/Kf  = 3.26, with the 
result 

The factor lcos 011 has been inserted since the phase a depends sensitively on the spatial 
pattern. It is nevertheless reasonable to  assume, in general, that this factor is of order 

quoted in the captions to figures (13) and (14) of Ahlers et al. (1981) 

fi = 0.015 lcosal. (40) 

t The value f’I = 7 x 
is in error, as can be seen from figure 13 itself. The correct value was used in all calculations, 
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unity, so that (4) yields an estimate which is close to the experimental valuefl z 0.014. 
In  view of the uncertainties in both experiment and theory the precise numbers are 
not significant, but i t  is gratifying that an a priori estimate of this rather subtle effect 
leads to a numerical value of the correct order of magnitude. 

This work was partially supported by the NSF under grant no. PHY77-27084, and 
by NATO under grant no. 128.82. 
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